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Problem. Let f : Rn → R be integrable. For α ≥ 0 define Eα = {x : |f(x)| > α}. Prove that∫
Rd
|f | =

∫ ∞
0

m(Eα) dα.

Proof. Consider the characteristic function χEα , which takes the value 1 when x ∈ Eα and 0 otherwise. This
function is nonnegative on a σ-finite space, so by Tonelli’s theorem,∫ ∞

0

∫
R
χEα(x) dx dα =

∫
R

∫ ∞
0

χEα(x) dα dx. (1)

Notice that for fixed x, χEα(x) is 1 for 0 ≤ α < |f(x)| and 0 otherwise. Thus∫ ∞
0

χEα(x) dα =
∫ ∞

0

χ[0,|f(x)|)(α) dα = |f(x)|.

Insert this into equation (1) and note that
∫

R χEα(x) dx = m(Eα) to obtain the result. Alternatively, since∫
R×[0,∞)

|χEα | =
∫

R |f | <∞, Fubini can be used instead of Tonelli.

Problem. Let F ⊆ R be closed and assume that the complement F c has finite measure. Define functions

δ(x) = dist(x, F ) = inf
z∈F
|x− z|

I(x) =
∫

R

δ(y)
|x− y|2

dy.

Show that

1. |δ(x)− δ(y)| ≤ |x− y| for all x, y ∈ R.

2. I(x) =∞ for all x ∈ F c.

3. I(x) <∞ for a.e. x ∈ F .

Proof. 1. Let x, y ∈ R and z ∈ F . Notice that δ(x) ≤ |x − z| by the definition of δ. From the triangle
inequality we have

δ(x) ≤ |x− z| ≤ |x− y|+ |y − z|.

Taking the infimum of |y − z| over all z ∈ F gives δ(x) − δ(y) ≤ |x − y|. Swapping the roles of x, y gives
δ(y)− δ(x) ≤ |x− y|, so together we find that

|δ(x)− δ(y)| ≤ |x− y|.

2. Let x ∈ F c. Since F is closed, F c is open; hence we can find a ball B2ε(x) ⊆ F c for some ε > 0. On the
ball Bε(x) we have δ ≥ ε. Therefore,

I(x) =
∫

R

δ(y)
|x− y|2

dy ≥
∫
Bε(x)

ε

|x− y|2
dy = 2ε

∫ ε

0

dy

y2
=∞.



3. It suffices to show that the integral of I over F is finite. Since all functions are positive, a use of Tonelli’s
theorem gives∫

F

I(x) dx =
∫
F

∫
R

δ(y)
|x− y|2

dy dx =
∫
F

∫
F c

δ(y)
|x− y|2

dy dx

∫
F c
δ(y)

[∫
F

dx

|x− y|2

]
dy; (2)

the second equality comes from the fact that δ = 0 on F . Given y ∈ F c, we have |x − y| ≥ δ(y) for all
x ∈ F . Given such a y, let B(y) denote the ball of radius δ(y) centered at y. We find that∫

F

dx

|x− y|2
≤
∫
B(y)c

dx

|x− y|2
= 2

∫ ∞
δ(y)

dx

x2
=

2
δ(y)

.

Inserting this into (2) gives ∫
F

I(x) dx ≤
∫
F c

2 dy = 2m(F c) <∞,

since F c has finite measure.

Problem. Let {Kε}ε>0 be a family of approximations to the identity on Rd; that is, there exist constants c1, c2 > 0
so that for every x ∈ Rd, |Kε(x)| ≤ c1ε

−d and |Kε(x)| ≤ c2ε|x|−(d+1). Let f ∈ L1(R) and define the maximal
function f∗(x) = supB3xm(B)−1

∫
B
|f |, where the supremum is over all balls in Rd containing the point x. Show

that there exists a constant c > 0 so that for every x ∈ Rd,

sup
ε>0
|(Kε ∗ f)(x)| ≤ cf∗(x).

Proof. Let ε > 0 and x ∈ Rd be given. Write Rd = E0 ∪ (E1 − E0) ∪ (E2 − E1) ∪ · · · , where for each k ∈ N,
Ek = {y : |x− y| ≤ ε2k}. Denote by vd for the volume of the unit ball in Rd; then we have

|(Kε ∗ f)(x)| =
∣∣∣∣∫ Kε(x− y)f(y) dy

∣∣∣∣
≤
∫
E0

|Kε(x− y)||f(y)| dy +
∞∑
k=1

∫
Ek−Ek−1

|Kε(x− y)||f(y)| dy

≤ c1
εd

∫
E0

|f(y)| dy +
∞∑
k=1

c2ε

∫
Ek−Ek−1

|f(y)|
|x− y|d+1

dy

≤ c1vd
vdεd

∫
E0

|f(y)| dy +
∞∑
k=1

c2vd
vdεd(2d+1)k−1

∫
Ek−Ek−1

|f(y)| dy

≤ c1vd
1

m(E0)

∫
E0

|f(y)| dy +
∞∑
k=1

2−dc2vd
2k−1

1
m(Ek)

∫
Ek

|f(y)| dy

≤ c1vdf∗(x) +
∞∑
k=1

2−dc2vd
2k−1

f∗(x)

= vd
(
c1 + c22−d

)
f∗(x).

Take the supremum over all ε > 0.


