Math 201A, Selected Homework Solutions

Charles Martin

November 25, 2009

Problem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be integrable. For $\alpha \geq 0$ define $E_{\alpha}=\{x:|f(x)|>\alpha\}$. Prove that

$$
\int_{\mathbb{R}^{d}}|f|=\int_{0}^{\infty} m\left(E_{\alpha}\right) d \alpha
$$

Proof. Consider the characteristic function $\chi_{E_{\alpha}}$, which takes the value 1 when $x \in E_{\alpha}$ and 0 otherwise. This function is nonnegative on a σ-finite space, so by Tonelli's theorem,

$$
\begin{equation*}
\int_{0}^{\infty} \int_{\mathbb{R}} \chi_{E_{\alpha}}(x) d x d \alpha=\int_{\mathbb{R}} \int_{0}^{\infty} \chi_{E_{\alpha}}(x) d \alpha d x \tag{1}
\end{equation*}
$$

Notice that for fixed $x, \chi_{E_{\alpha}}(x)$ is 1 for $0 \leq \alpha<|f(x)|$ and 0 otherwise. Thus

$$
\int_{0}^{\infty} \chi_{E_{\alpha}}(x) d \alpha=\int_{0}^{\infty} \chi_{[0,|f(x)|)}(\alpha) d \alpha=|f(x)|
$$

Insert this into equation (1) and note that $\int_{\mathbb{R}} \chi_{E_{\alpha}}(x) d x=m\left(E_{\alpha}\right)$ to obtain the result. Alternatively, since $\int_{\mathbb{R} \times[0, \infty)}\left|\chi_{E_{\alpha}}\right|=\int_{\mathbb{R}}|f|<\infty$, Fubini can be used instead of Tonelli.

Problem. Let $F \subseteq \mathbb{R}$ be closed and assume that the complement F^{c} has finite measure. Define functions

$$
\begin{aligned}
& \delta(x)=\operatorname{dist}(x, F)=\inf _{z \in F}|x-z| \\
& I(x)=\int_{\mathbb{R}} \frac{\delta(y)}{|x-y|^{2}} d y
\end{aligned}
$$

Show that

1. $|\delta(x)-\delta(y)| \leq|x-y|$ for all $x, y \in \mathbb{R}$.
2. $I(x)=\infty$ for all $x \in F^{c}$.
3. $I(x)<\infty$ for a.e. $x \in F$.

Proof. 1. Let $x, y \in \mathbb{R}$ and $z \in F$. Notice that $\delta(x) \leq|x-z|$ by the definition of δ. From the triangle inequality we have

$$
\delta(x) \leq|x-z| \leq|x-y|+|y-z| .
$$

Taking the infimum of $|y-z|$ over all $z \in F$ gives $\delta(x)-\delta(y) \leq|x-y|$. Swapping the roles of x, y gives $\delta(y)-\delta(x) \leq|x-y|$, so together we find that

$$
|\delta(x)-\delta(y)| \leq|x-y|
$$

2. Let $x \in F^{c}$. Since F is closed, F^{c} is open; hence we can find a ball $B_{2 \epsilon}(x) \subseteq F^{c}$ for some $\epsilon>0$. On the ball $B_{\epsilon}(x)$ we have $\delta \geq \epsilon$. Therefore,

$$
I(x)=\int_{\mathbb{R}} \frac{\delta(y)}{|x-y|^{2}} d y \geq \int_{B_{\epsilon}(x)} \frac{\epsilon}{|x-y|^{2}} d y=2 \epsilon \int_{0}^{\epsilon} \frac{d y}{y^{2}}=\infty
$$

3. It suffices to show that the integral of I over F is finite. Since all functions are positive, a use of Tonelli's theorem gives

$$
\begin{equation*}
\int_{F} I(x) d x=\int_{F} \int_{\mathbb{R}} \frac{\delta(y)}{|x-y|^{2}} d y d x=\int_{F} \int_{F^{c}} \frac{\delta(y)}{|x-y|^{2}} d y d x \int_{F^{c}} \delta(y)\left[\int_{F} \frac{d x}{|x-y|^{2}}\right] d y \tag{2}
\end{equation*}
$$

the second equality comes from the fact that $\delta=0$ on F. Given $y \in F^{c}$, we have $|x-y| \geq \delta(y)$ for all $x \in F$. Given such a y, let $B(y)$ denote the ball of radius $\delta(y)$ centered at y. We find that

$$
\int_{F} \frac{d x}{|x-y|^{2}} \leq \int_{B(y)^{c}} \frac{d x}{|x-y|^{2}}=2 \int_{\delta(y)}^{\infty} \frac{d x}{x^{2}}=\frac{2}{\delta(y)}
$$

Inserting this into (2) gives

$$
\int_{F} I(x) d x \leq \int_{F^{c}} 2 d y=2 m\left(F^{c}\right)<\infty
$$

since F^{c} has finite measure.

Problem. Let $\left\{K_{\epsilon}\right\}_{\epsilon>0}$ be a family of approximations to the identity on \mathbb{R}^{d}; that is, there exist constants $c_{1}, c_{2}>0$ so that for every $x \in \mathbb{R}^{d}$, $\left|K_{\epsilon}(x)\right| \leq c_{1} \epsilon^{-d}$ and $\left|K_{\epsilon}(x)\right| \leq c_{2} \epsilon|x|^{-(d+1)}$. Let $f \in L^{1}(\mathbb{R})$ and define the maximal function $f^{*}(x)=\sup _{B \ni x} m(B)^{-1} \int_{B}|f|$, where the supremum is over all balls in \mathbb{R}^{d} containing the point x. Show that there exists a constant $c>0$ so that for every $x \in \mathbb{R}^{d}$,

$$
\sup _{\epsilon>0}\left|\left(K_{\epsilon} * f\right)(x)\right| \leq c f^{*}(x)
$$

Proof. Let $\epsilon>0$ and $x \in \mathbb{R}^{d}$ be given. Write $\mathbb{R}^{d}=E_{0} \cup\left(E_{1}-E_{0}\right) \cup\left(E_{2}-E_{1}\right) \cup \cdots$, where for each $k \in \mathbb{N}$, $E_{k}=\left\{y:|x-y| \leq \epsilon 2^{k}\right\}$. Denote by v_{d} for the volume of the unit ball in \mathbb{R}^{d}; then we have

$$
\begin{aligned}
\left|\left(K_{\epsilon} * f\right)(x)\right| & =\left|\int K_{\epsilon}(x-y) f(y) d y\right| \\
& \leq \int_{E_{0}}\left|K_{\epsilon}(x-y)\right||f(y)| d y+\sum_{k=1}^{\infty} \int_{E_{k}-E_{k-1}}\left|K_{\epsilon}(x-y)\right||f(y)| d y \\
& \leq \frac{c_{1}}{\epsilon^{d}} \int_{E_{0}}|f(y)| d y+\sum_{k=1}^{\infty} c_{2} \epsilon \int_{E_{k}-E_{k-1}} \frac{|f(y)|}{|x-y|^{d+1}} d y \\
& \leq \frac{c_{1} v_{d}}{v_{d} \epsilon^{d}} \int_{E_{0}}|f(y)| d y+\sum_{k=1}^{\infty} \frac{c_{2} v_{d}}{v_{d} \epsilon^{d}\left(2^{d+1}\right)^{k-1}} \int_{E_{k}-E_{k-1}}|f(y)| d y \\
& \leq c_{1} v_{d} \frac{1}{m\left(E_{0}\right)} \int_{E_{0}}|f(y)| d y+\sum_{k=1}^{\infty} \frac{2^{-d} c_{2} v_{d}}{2^{k-1}} \frac{1}{m\left(E_{k}\right)} \int_{E_{k}}|f(y)| d y \\
& \leq c_{1} v_{d} f^{*}(x)+\sum_{k=1}^{\infty} \frac{2^{-d} c_{2} v_{d}}{2^{k-1}} f^{*}(x) \\
& =v_{d}\left(c_{1}+c_{2} 2^{-d}\right) f^{*}(x) .
\end{aligned}
$$

Take the supremum over all $\epsilon>0$.

